论文标题
基本chirp模型参数的估计方法
Estimation methods for elementary chirp model parameters
论文作者
论文摘要
在本文中,我们提出了一些估计技术来估计基本的CHIRP模型参数,这些参数在声纳,雷达,声学和其他领域遇到。我们得出了最小二乘估计器的渐近理论特性,并为单组分基本chirp模型的近似最小二乘估计量提供了近似最小二乘估计器。事实证明,所提出的估计器非常一致,并渐近地遵循正态分布。我们还建议如何获得这些方法的适当初始值。当模型中的组件数量较大,或者信噪比较低时,或者两个频率速率彼此接近时,找到初始值的问题是一个困难的问题。我们提出了顺序的程序,以估计多组分基本CHIRP模型参数。我们证明,顺序最小二乘估计器的理论特性和顺序近似最小二乘估计器分别与最小二乘估计器和近似最小二乘估计器一致。为了评估所提出的估计器的性能,进行了数值实验。可以观察到,即使在最小二乘估计器表现不佳的情况下,提出的顺序估计器即使在情况下表现良好。我们说明了BAT数据上提出的顺序算法的性能。
In this paper, we propose some estimation techniques to estimate the elementary chirp model parameters, which are encountered in sonar, radar, acoustics, and other areas. We derive asymptotic theoretical properties of least squares estimators and approximate least squares estimators for the one-component elementary chirp model. It is proved that the proposed estimators are strongly consistent and follow the normal distribution asymptotically. We also suggest how to obtain proper initial values for these methods. The problem of finding initial values is a difficult problem when the number of components in the model is large, or when the signal-to-noise ratio is low, or when two frequency rates are close to each other. We propose sequential procedures to estimate the multiple-component elementary chirp model parameters. We prove that the theoretical properties of sequential least squares estimators and sequential approximate least squares estimators coincide with those of least squares estimators and approximate least squares estimators, respectively. To evaluate the performance of the proposed estimators, numerical experiments are performed. It is observed that the proposed sequential estimators perform well even in situations where least squares estimators do not perform well. We illustrate the performance of the proposed sequential algorithm on a bat data.