论文标题
零订单硬阈值:梯度错误与扩张性
Zeroth-Order Hard-Thresholding: Gradient Error vs. Expansivity
论文作者
论文摘要
$ \ ell_0 $限制的优化在机器学习中很普遍,尤其是对于高维问题,因为它是实现稀疏学习的基本方法。坚硬的梯度下降是解决此问题的主要技术。但是,在许多现实世界中,计算目标函数的一阶梯度可能是不可用的,也可能是昂贵的,在许多现实世界中,零阶(ZO)梯度可能是一个很好的代理。不幸的是,ZO梯度是否可以与势头限制操作员一起工作仍然是一个未解决的问题。为了解决这个难题,在本文中,我们将重点放在$ \ ell_0 $约束的黑盒随机优化问题上,并提出了一个新的随机Zeroth阶梯度梯度硬质阈值(SZOHT)算法,并使用一般的ZO梯度梯度估计器,由一般的ZO梯度估计器,由小说随机支持采样。我们在标准假设下提供SZOHT的收敛分析。重要的是,我们揭示了ZO估计器的偏差与硬质操作员的膨胀性之间的冲突,并提供了ZO梯度中随机方向数量的理论最小值。此外,我们发现SZOHT的查询复杂性是独立的或弱依赖于不同设置下的维度。最后,我们说明了我们在投资组合优化问题以及黑框对抗攻击方面的实用性。
$\ell_0$ constrained optimization is prevalent in machine learning, particularly for high-dimensional problems, because it is a fundamental approach to achieve sparse learning. Hard-thresholding gradient descent is a dominant technique to solve this problem. However, first-order gradients of the objective function may be either unavailable or expensive to calculate in a lot of real-world problems, where zeroth-order (ZO) gradients could be a good surrogate. Unfortunately, whether ZO gradients can work with the hard-thresholding operator is still an unsolved problem. To solve this puzzle, in this paper, we focus on the $\ell_0$ constrained black-box stochastic optimization problems, and propose a new stochastic zeroth-order gradient hard-thresholding (SZOHT) algorithm with a general ZO gradient estimator powered by a novel random support sampling. We provide the convergence analysis of SZOHT under standard assumptions. Importantly, we reveal a conflict between the deviation of ZO estimators and the expansivity of the hard-thresholding operator, and provide a theoretical minimal value of the number of random directions in ZO gradients. In addition, we find that the query complexity of SZOHT is independent or weakly dependent on the dimensionality under different settings. Finally, we illustrate the utility of our method on a portfolio optimization problem as well as black-box adversarial attacks.