论文标题
l词学方向的捆绑转移,用于单数空间
Bundle Transfer of L-Homology Orientation Classes for Singular Spaces
论文作者
论文摘要
我们考虑在Ranicki的对称L-Spectrum中传递普通同源性,单数空间的界限和具有系数的同源物,与封闭封闭的定向PL歧管纤维和紧凑型多面体碱基相关。我们证明,如果基本多面体是一个智慧空间,例如纯粹的紧凑型复合体代数变体,那么底座的对称L-样式取向,由Laures,McClure和作者构成,将转移到总空间的L-词素方向。我们从中推断出基本的Cheeger-Goresky-Macpherson L级L级将总空间的L级乘积与稳定的垂直垂直正常微容器的共同体L-Class相同。
We consider transfer maps on ordinary homology, bordism of singular spaces and homology with coefficients in Ranicki's symmetric L-spectrum, associated to block bundles with closed oriented PL manifold fiber and compact polyhedral base. We prove that if the base polyhedron is a Witt space, for example a pure-dimensional compact complex algebraic variety, then the symmetric L-homology orientation of the base, constructed by Laures, McClure and the author, transfers to the L-homology orientation of the total space. We deduce from this that the Cheeger-Goresky-MacPherson L-class of the base transfers to the product of the L-class of the total space with the cohomological L-class of the stable vertical normal microbundle.