论文标题
DPANET:语义分割的双池注意网络
DPANET:Dual Pooling Attention Network for Semantic Segmentation
论文作者
论文摘要
图像分割是一项历史性且重要的计算机视觉任务。在深度学习技术的帮助下,图像语义细分取得了长足的进步。近年来,基于注意机制的指导与CNN相比,它克服了不同渠道之间缺乏相互作用的问题,并有效地捕获和汇总了上下文信息。但是,注意机制产生的大规模操作导致其极高的复杂性和对GPU记忆的高需求。为此,我们提出了一个名为Dual Pool注意网络(DPANET)的轻质和灵活的神经网络。最重要的是DPANET中的所有模块生成\ textbf {0}参数。第一个组件是空间池注意模块,我们制定了一种简单且强大的方法,可密集地提取上下文特征并大大减少计算和复杂性的量。同时,它展示了均匀和较大的内核大小的力量。第二个组件是通道池注意模块。众所周知,CNN的计算过程包含了空间和通道维度的信息。因此,该模块的目的是将它们剥离,以便构建所有渠道的关系并选择性地提高不同的频道语义信息。此外,我们在分割数据集上进行了实验,该数据集显示了我们的方法简单有效,并且具有较低的参数和计算复杂性。
Image segmentation is a historic and significant computer vision task. With the help of deep learning techniques, image semantic segmentation has made great progresses. Over recent years, based on guidance of attention mechanism compared with CNN which overcomes the problems of lacking of interaction between different channels, and effective capturing and aggregating contextual information. However, the massive operations generated by the attention mechanism lead to its extremely high complexity and high demand for GPU memory. For this purpose, we propose a lightweight and flexible neural network named Dual Pool Attention Network(DPANet). The most important is that all modules in DPANet generate \textbf{0} parameters. The first component is spatial pool attention module, we formulate an easy and powerful method densely to extract contextual characteristics and reduce the amount of calculation and complexity dramatically.Meanwhile, it demonstrates the power of even and large kernel size. The second component is channel pool attention module. It is known that the computation process of CNN incorporates the information of spatial and channel dimensions. So, the aim of this module is stripping them out, in order to construct relationship of all channels and heighten different channels semantic information selectively. Moreover, we experiments on segmentation datasets, which shows our method simple and effective with low parameters and calculation complexity.