论文标题

通过Fisher面膜提高清晰度意识最小化,以更好地概括语言模型

Improving Sharpness-Aware Minimization with Fisher Mask for Better Generalization on Language Models

论文作者

Zhong, Qihuang, Ding, Liang, Shen, Li, Mi, Peng, Liu, Juhua, Du, Bo, Tao, Dacheng

论文摘要

在有限的培训语料库中对大型审计语言模型进行微调通常遭受概括不佳。先前的工作表明,最近提供的清晰度最小化(SAM)优化方法可以改善模型的概括。但是,SAM平等地向每个模型参数增加了扰动(但并非所有参数都同等地促进训练的优化),我们认为这是次优的,并且会导致过度计算。在本文中,我们提出了一种新型的优化程序,即FSAM,该程序引入了Fisher面膜以提高SAM的效率和性能。简而言之,FSAM使用Fisher信息来识别重要参数并制定Fisher掩码以获得稀疏的扰动,即使优化器专注于这些重要参数。对胶水和超级基准测试的各种任务的实验表明,FSAM在四个不同审慎的验证模型中的平均得分始终优于香草SAM的平均得分0.67〜1.98。我们还从经验上表明,FSAM在其他复杂方案中效果很好,例如,对生成任务或有限的培训数据进行微调。令人鼓舞的是,当培训数据受到限制时,FSAM将SAM提高了很大的利润率,即高达15.1。

Fine-tuning large pretrained language models on a limited training corpus usually suffers from poor generalization. Prior works show that the recently-proposed sharpness-aware minimization (SAM) optimization method can improve the model generalization. However, SAM adds a perturbation to each model parameter equally (but not all parameters contribute equally to the optimization of training), which we argue is sub-optimal and will lead to excessive computation. In this paper, we propose a novel optimization procedure, namely FSAM, which introduces a Fisher mask to improve the efficiency and performance of SAM. In short, instead of adding perturbation to all parameters, FSAM uses the Fisher information to identity the important parameters and formulates a Fisher mask to obtain the sparse perturbation, i.e., making the optimizer focus on these important parameters. Experiments on various tasks in GLUE and SuperGLUE benchmarks show that FSAM consistently outperforms the vanilla SAM by 0.67~1.98 average score among four different pretrained models. We also empirically show that FSAM works well in other complex scenarios, e.g., fine-tuning on generation tasks or limited training data. Encouragingly, when training data is limited, FSAM improves the SAM by a large margin, i.e., up to 15.1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源