论文标题
可解释基于fMRI的大脑解码通过空间颞上pyramid图卷积网络
Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph Convolutional Network
论文作者
论文摘要
大脑解码,旨在使用神经活动来识别大脑状态,对认知神经科学和神经工程非常重要。但是,基于fMRI的大脑解码的现有机器学习方法要么患有低分类性能或不良解释性。在这里,我们通过提出一个生物学启发的体系结构,空间暂时性 - 金字塔卷积网络(STPGCN)来解决此问题,以捕获功能性脑活动的时空图表示。通过设计模仿大脑信息过程和时间整合的多尺度时空途径和自下而上的途径,STPGCN能够通过图表通过图明确地利用大脑活动的多尺度时间依赖性,从而实现高脑解码性能。此外,我们提出了一种称为brainnetx的灵敏度分析方法,可以通过从大脑网络的角度自动注释与任务相关的大脑区域来更好地解释解码结果。我们在人类Connectome项目(HCP)S1200的23个认知任务下对fMRI数据进行了广泛的实验。结果表明,与竞争基线模型相比,STPGC显着改善了大脑解码性能。 BrainNetx成功注释了与任务相关的大脑区域。基于这些区域的事后分析进一步验证了STPGCN中的层次结构显着促进了模型的解释性,鲁棒性和概括。我们的方法不仅可以在多个认知任务下对大脑中信息表示形式提供见解,而且还表明了基于fMRI的大脑解码的光明未来。
Brain decoding, aiming to identify the brain states using neural activity, is important for cognitive neuroscience and neural engineering. However, existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability. Here, we address this issue by proposing a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities. By designing multi-scale spatial-temporal pathways and bottom-up pathways that mimic the information process and temporal integration in the brain, STpGCN is capable of explicitly utilizing the multi-scale temporal dependency of brain activities via graph, thereby achieving high brain decoding performance. Additionally, we propose a sensitivity analysis method called BrainNetX to better explain the decoding results by automatically annotating task-related brain regions from the brain-network standpoint. We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200. The results show that STpGCN significantly improves brain decoding performance compared to competing baseline models; BrainNetX successfully annotates task-relevant brain regions. Post hoc analysis based on these regions further validates that the hierarchical structure in STpGCN significantly contributes to the explainability, robustness and generalization of the model. Our methods not only provide insights into information representation in the brain under multiple cognitive tasks but also indicate a bright future for fMRI-based brain decoding.