论文标题
使用马尔可夫状态模型优化非平衡自组装协议
Optimization of Non-Equilibrium Self-Assembly Protocols Using Markov State Models
论文作者
论文摘要
自我组装的希望能够以规定的结构和功能的自下而上形成材料的自下而上形成,促进了强烈的努力,以发现理性的设计原理,以最大程度地提高目标结构的产量。然而,尽管有许多成功的自我组装实例,但在许多系统中,确保目标结构的动力学可及性仍然是一个未解决的问题。特别是,长寿命的动力学陷阱会导致组装时间大大超过实验可访问的时间尺度。一种提出的解决方案是设计非平衡组装协议,其中系统参数会随着时间而变化以避免这种动力学陷阱。在这里,我们开发了一个将马尔可夫州模型(MSM)分析与最佳控制理论相结合的框架,以计算一项时间依赖的协议,该协议在有限的时间内最大化目标结构的产量。我们提出了一种基于伴随的梯度下降方法,该方法与系统的控制参数的函数一起,可以有效地优化汇编协议。我们还描述了一种插值方法,可显着减少构建MSM所需的模拟数量。我们在两个例子上演示了我们的方法。一种简单的半分析模型,用于折叠胶体颗粒的聚合物,以及一个更复杂的衣壳组件模型。我们的结果表明,优化时间依赖性方案可以在所选结构的产量中取得重大改善,包括平衡自由能最小值,长期寿命的亚稳态结构和瞬态状态。
The promise of self-assembly to enable bottom-up formation of materials with prescribed architectures and functions has driven intensive efforts to uncover rational design principles for maximizing the yield of a target structure. Yet, despite many successful examples of self-assembly, ensuring kinetic accessibility of the target structure remains an unsolved problem in many systems. In particular, long-lived kinetic traps can result in assembly times that vastly exceed experimentally accessible timescales. One proposed solution is to design non-equilibrium assembly protocols in which system parameters change over time to avoid such kinetic traps. Here, we develop a framework to combine Markov state model (MSM) analysis with optimal control theory to compute a time-dependent protocol that maximizes the yield of the target structure at a finite-time. We present an adjoint-based gradient descent method that, in conjunction with MSMs for a system as a function of its control parameters, enables efficiently optimizing the assembly protocol. We also describe an interpolation approach to significantly reduce the number of simulations required to construct the MSMs. We demonstrate our approach on two examples; a simple semi-analytic model for the folding of a polymer of colloidal particles, and a more complex model for capsid assembly. Our results show that optimizing time-dependent protocols can achieve significant improvements in yields of selected structures, including equilibrium free energy minima, long-lived metastable structures, and transient states.