论文标题

有效的运营商及其用于离散电网络问题的变异原则

Effective operators and their variational principles for discrete electrical network problems

论文作者

Beard, Kenneth, Stefan, Anthony, Viator, Robert, Welters, Aaron

论文摘要

使用希尔伯特太空框架,灵感受到正交投影和霍奇分解方法的启发,我们研究了在有效的媒体理论中出现的一般问题(称为z问题),尤其是在复合材料理论中,用于定义有效的操作员。基于块操作员方法开发了一种新的和统一的方法,用于获得Z-问题的解决方案,从Schur补体中为有效运营商的公式以及相关的变分原理(例如Dirichlet和Thomson最小化原理),这些原理导致有效运营商的上限和下限。在有限维的希尔伯特空间的情况下,这可以放松对通常在此类问题中通常考虑的算子类别的阳性和可逆性的标准假设,并通过取代Moore-Penrose PseudoIntervess。当我们发展理论时,我们展示了它如何适用于在标准假设下的连续体(2D和3D)中的有效电导率问题的复合材料理论中使用的经典示例。之后,我们考虑了以下三个重要且多样化的离散电网络问题的例子,我们的理论在放松的假设下适用于这些问题。首先,给出了在有限线性图上进行电网络的离散差异到Neumann(DTN)映射的运算符理论重新重新制定,并用于将DTN映射与相关Z-Problem的有效运算符相关联。最后,我们考虑在周期性线性图上的电网络,并开发出与经典电导率方程式和连续性有效电导率的经典示例的离散类似物。

Using a Hilbert space framework inspired by the methods of orthogonal projections and Hodge decompositions, we study a general class of problems (called Z-problems) that arise in effective media theory, especially within the theory of composites, for defining the effective operator. A new and unified approach is developed, based on block operator methods, for obtaining solutions of the Z-problem, formulas for the effective operator in terms of the Schur complement, and associated variational principles (e.g., the Dirichlet and Thomson minimization principles) that lead to upper and lower bounds on the effective operator. In the case of finite-dimensional Hilbert spaces, this allows for a relaxation of the standard hypotheses on positivity and invertibility for the classes of operators usually considered in such problems, by replacing inverses with the Moore-Penrose pseudoinverse. As we develop the theory, we show how it applies to the classical example from the theory of composites on the effective conductivity in the periodic conductivity problem in the continuum (2d and 3d) under the standard hypotheses. After that, we consider the following three important and diverse examples of discrete electrical network problems in which our theory applies under the relaxed hypotheses. First, an operator-theoretic reformulation of the discrete Dirichlet-to-Neumann (DtN) map for an electrical network on a finite linear graph is given and used to relate the DtN map to the effective operator of an associated Z-problem.\ Second, we show how the classical effective conductivity of an electrical network on a finite linear graph is essentially the effective operator of an associated Z-problem. Finally, we consider electrical networks on periodic linear graphs and develop a discrete analog to classical example of the periodic conductivity equation and effective conductivity in the continuum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源