论文标题

Hörmander型振荡整体操作员的二分法

A dichotomy for Hörmander-type oscillatory integral operators

论文作者

Guo, Shaoming, Wang, Hong, Zhang, Ruixiang

论文摘要

在本文中,我们首先概括了波尔加因的工作,并陈述了Hörmander-type振荡整体操作员的曲率条件,我们称之为波尔加因的状况。对于傅立叶限制问题和Bochner-Riesz问题,相位函数非常满足。我们猜想,对于满足Bourgain状况的Hörmander-type振荡整体操作员,他们满足与傅立叶限制猜想相同的$ l^p $界限。为了支持我们的猜想,我们表明,每当波尔加因的状况失败时,$ l^{\ infty} \ to l^q $有限始终失败,对于某些$ q = q(n)> \ frac {2n} {n-1} {n-1} $,扩展了Bourgain的三维结果。另一方面,如果布尔加因的状况持续下去,那么我们证明了Hörmander-type振动性积分运算符的$ l^p $范围,用于$ p $,这扩展了Hickman和Zahl给出的高度傅立叶限制构想的当前最著名的范围。这在傅立叶限制问题和Bochner-Riesz问题上给出了新的进展。

In this paper, we first generalize the work of Bourgain and state a curvature condition for Hörmander-type oscillatory integral operators, which we call Bourgain's condition. This condition is notably satisfied by the phase functions for the Fourier restriction problem and the Bochner-Riesz problem. We conjecture that for Hörmander-type oscillatory integral operators satisfying Bourgain's condition, they satisfy the same $L^p$ bounds as in the Fourier Restriction Conjecture. To support our conjecture, we show that whenever Bourgain's condition fails, then the $L^{\infty} \to L^q$ boundedness always fails for some $q= q(n) > \frac{2n}{n-1}$, extending Bourgain's three-dimensional result. On the other hand, if Bourgain's condition holds, then we prove $L^p$ bounds for Hörmander-type oscillatory integral operators for a range of $p$ that extends the currently best-known range for the Fourier restriction conjecture in high dimensions, given by Hickman and Zahl. This gives new progress on the Fourier restriction problem and the Bochner-Riesz problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源