论文标题

最佳$ l^2 $ holomorphic矢量束的扩展与单数隐士指标

Optimal $L^2$ extension for holomorphic vector bundles with singular hermitian metrics

论文作者

Guan, Qi'an, Mi, Zhitong, Yuan, Zheng

论文摘要

在本文中,我们研究了单一遗传学指标对全态矢量捆绑包的奇异纳卡诺(Nakano)阳性的特性,并建立了一个最佳的$ l^2 $ l^2 $扩展定理,用于与单数的Hermitian指标,具有虚弱的Hermitian指标。作为应用程序,我们为在最佳$ l^2 $扩展定理中持有平等的必要条件,并呈现一些$ l^2 $扩展定理的奇异遗传学霍尔米克式矢量捆绑包版本,具有最佳估计。

In the present paper, we study the properties of singular Nakano positivity of singular hermitian metrics on holomorphic vector bundles, and establish an optimal $L^2$ extension theorem for holomorphic vector bundles with singular hermitian metrics on weakly pseudoconvex Kähler manifolds. As applications, we give a necessary condition for the holding of the equality in optimal $L^2$ extension theorem, and present singular hermitian holomorphic vector bundle versions of some $L^2$ extension theorems with optimal estimate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源