论文标题

关于梯度规范在豆类边界中的重要性

On the Importance of Gradient Norm in PAC-Bayesian Bounds

论文作者

Gat, Itai, Adi, Yossi, Schwing, Alexander, Hazan, Tamir

论文摘要

评估真实风险和经验风险之间差异的概括范围已经进行了广泛的研究。但是,为了获得边界,当前技术使用严格的假设,例如统一边界或Lipschitz损失函数。为了避免这些假设,在本文中,我们遵循一种替代方法:我们通过使用平均界限损失和平均有限梯度范数假设来放松统一的假设。在这种放松之后,我们提出了一种新的概括结合,以利用对数 - 贝贝尔夫不平等的合同性。这些不等式为概括结合增加了额外的损失拟态术语,这在直觉上是模型复杂性的替代品。我们将提议的绑定应用于贝叶斯深网,并经验分析了这种新的损失梯度术语对不同神经体系结构的影响。

Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源