论文标题
$ \ binom {3K} {k} $的生成系列的部分总和
Congruences for partial sums of the generating series for $\binom{3k}{k}$
论文作者
论文摘要
我们生产一致性modulo a Prime $ p> 3 $ for sums $ \ sum_k \ binom {3k} {k} {k} x^k $ a ranges $ 0 \ le k <q $和$ 0 \ le k <q/3 $,其中$ q $是$ p $的功率。 $ x $等于$ c^2/(1-c)^3 $,或$ 4S^2/\ bigl(27(s^2-1)\ bigr)$,其中$ c $和$ s $是不确定的。在前一种情况下,我们更普遍地处理移动的二项式系数$ \ binom {3k+e} {k} $。我们的方法从相应的系列的封闭形式直接得出了这种一致性。
We produce congruences modulo a prime $p>3$ for sums $\sum_k\binom{3k}{k}x^k$ over ranges $0\le k<q$ and $0\le k<q/3$, where $q$ is a power of $p$. Here $x$ equals either $c^2/(1-c)^3$, or $4s^2/\bigl(27(s^2-1)\bigr)$, where $c$ and $s$ are indeterminates. In the former case we deal more generally with shifted binomial coefficients $\binom{3k+e}{k}$. Our method derives such congruences directly from closed forms for the corresponding series.