论文标题
五个关于半群的三角添加法
Five Trigonometric addition laws on semigroups
论文作者
论文摘要
在本文中,我们确定以下功能方程的复杂值解\ [g(xσ(y))= g(x)g(y)+f(x)f(x)f(y),\ quad x,y \ in s,\ in s,\] \ [f(xσ(xσ(y)) s,\] \ [f(xσ(y))= f(x)g(y)+f(y)g(x)-g(x)-g(x)g(y),\ quad x,y \ in S,\] \ [f(xσ(y)) S,\]\[f(xσ(y))=f(x)g(y)-f(y)g(x)+αg(xσ(y)),\quad x,y\in S,\] where $S$ is a semigroup, $α\in \mathbb{C}\backslash \lbrace 0\rbrace$ is a fixed constant and $σ:s \ rightarrow s $是一种涉及的自动形态。
In this paper, we determine the complex-valued solutions of the following functional equations \[g(xσ(y)) = g(x)g(y)+f(x)f(y),\quad x,y\in S,\]\[f(xσ(y)) = f(x)g(y)+f(y)g(x),\quad x,y\in S,\]\[f(xσ(y)) = f(x)g(y)+f(y)g(x)-g(x)g(y),\quad x,y\in S,\]\[f(xσ(y))=f(x)g(y)+f(y)g(x)+αg(xσ(y)),\quad x,y\in S,\]\[f(xσ(y))=f(x)g(y)-f(y)g(x)+αg(xσ(y)),\quad x,y\in S,\] where $S$ is a semigroup, $α\in \mathbb{C}\backslash \lbrace 0\rbrace$ is a fixed constant and $σ:S\rightarrow S$ an involutive automorphism.