论文标题
加权lebesgue空间的独特性
Uniqueness in weighted Lebesgue spaces for an elliptic equation with drift on manifolds
论文作者
论文摘要
我们在适当加权的Lebesgue空间中调查了一类椭圆方程的解决方案,并在完整的,不相容的,riemannian的歧管$ m $的无限体积和尺寸$ n \ ge2 $上摆放了漂移。此外,在多项式体积增长的模型歧管的特殊情况下,我们表明漂移项上的条件很清晰。
We investigate the uniqueness, in suitable weighted Lebesgue spaces, of solutions to a class of elliptic equations with a drift posed on a complete, noncompact, Riemannian manifold $M$ of infinite volume and dimension $N\ge2$. Furthermore, in the special case of a model manifold with polynomial volume growth, we show that the conditions on the drift term are sharp.