论文标题
人造:通过梯度对齐测试个人公平性
fAux: Testing Individual Fairness via Gradient Alignment
论文作者
论文摘要
机器学习模型容易受到导致来自不同人群的个体不公平治疗的偏见。旨在测试模型在个人层面上的公平性的最新工作要么依赖于域知识来选择指标,要么依赖于产生偏域样本的输入转换。我们描述了一种新的方法,用于测试没有任何要求的个人公平。我们提出了一个新的标准,用于评估个人公平性,并根据我们称之为人造(发音为FOX)的标准开发实用的测试方法。这是基于比较要测试的模型预测的衍生物,该模型的预测与辅助模型的预测相比较,该模型可以从观察到的数据中预测受保护的变量。我们表明,所提出的方法有效地确定了对合成和现实世界数据集的歧视,并且在当代方法上具有定量和定性的优势。
Machine learning models are vulnerable to biases that result in unfair treatment of individuals from different populations. Recent work that aims to test a model's fairness at the individual level either relies on domain knowledge to choose metrics, or on input transformations that risk generating out-of-domain samples. We describe a new approach for testing individual fairness that does not have either requirement. We propose a novel criterion for evaluating individual fairness and develop a practical testing method based on this criterion which we call fAux (pronounced fox). This is based on comparing the derivatives of the predictions of the model to be tested with those of an auxiliary model, which predicts the protected variable from the observed data. We show that the proposed method effectively identifies discrimination on both synthetic and real-world datasets, and has quantitative and qualitative advantages over contemporary methods.