论文标题
从状态的密度中提取频带结构参数的深度学习:三层石墨烯的案例研究
Deep learning extraction of band structure parameters from density of states: a case study on trilayer graphene
论文作者
论文摘要
二维材料的开发导致了各种新型的高质量化合物,复杂性增加。综合定量理论的关键要求是准确确定这些材料的频带结构参数。但是,由于复杂的带结构和实验探针的间接性质,此任务具有挑战性。在这项工作中,我们引入了一个通用框架,以使用深神经网络从实验数据中得出频带结构参数。我们将方法应用于Trilayer石墨烯的穿透场电容测量,这是对其状态密度的有效探测。首先,我们证明了经过训练的深网为穿透场电容作为紧密结合参数的函数提供了准确的预测。接下来,我们使用训练有素的网络的快速准确预测直接从实验数据中自动确定紧密结合参数,而提取的参数与文献中的值非常一致。我们通过讨论我们方法对其他材料和实验技术的潜在应用,超出了穿透场电容。
The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance.