论文标题

一组不稳定的曲线,用于在表面上变形的Hermitian Yang-Mills和Z-Critional方程

The set of destabilizing curves for deformed Hermitian Yang-Mills and Z-critical equations on surfaces

论文作者

Khalid, Sohaib, Dyrefelt, Zakarias Sjöström

论文摘要

我们表明,在任何紧凑的kähler表面存在上,可以使用有限数量的有效条件来表征z临界方程的溶液,其中条件的数量在上面的表面数量上以上是表面的Picard数量,这导致了Bridgeland稳定性中局部有限的壁chamber demopition的第一个PDE类似物。 作为应用程序,我们表征了唐纳森(Donaldson)的J-方程式和变形的Hermitian Yang-Mills方程式的最佳稳定曲线,这证明了对均匀J稳定性的最佳稳定测试配置的不存在结果,以及针对某些几何学流的改进结果进行评论。

We show that on any compact Kähler surface existence of solutions to the Z-critical equation can be characterized using a finite number of effective conditions, where the number of conditions is bounded above by the Picard number of the surface.This leads to a first PDE analogue of the locally finite wall-chamber decomposition in Bridgeland stability. As an application we characterize optimally destabilizing curves for Donaldson's J-equation and the deformed Hermitian Yang-Mills equation, prove a non-existence result for optimally destabilizing test configurations for uniform J-stability, and remark on improvements to convergence results for certain geometric flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源