论文标题
带有尖峰DS-RESNET的多层次射击:实现更好,更深入训练的尖峰神经网络
Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper Directly-Trained Spiking Neural Networks
论文作者
论文摘要
尖峰神经网络(SNN)是具有异步离散和稀疏特征的生物启发的神经网络,它们在低能消耗中越来越表现出它们的优势。最近的研究致力于利用时空信息通过反向传播直接训练SNN。但是,尖峰活动的二进制和非差异性能直接训练了SNN,使SNN遭受了严重的梯度消失和网络退化,这极大地限制了直接训练的SNN的性能,并防止它们更深。在本文中,我们提出了一种基于现有的时空背部传播(STBP)方法的多级射击方法(MLF)方法,并提出了尖峰抑制了处于休眠的残留网络(Spiking DS-Resnet)。 MLF实现了更有效的梯度传播和神经元的增量表达能力。尖峰DS-RESNET可以有效地执行离散尖峰的标识映射,并为深SNN中的梯度传播提供了更合适的连接。通过提出的方法,我们的模型在非神经形态数据集和两个神经形态数据集上实现了卓越的性能,具有较少的训练参数,并证明了在深SNN中消除梯度消失和降解问题的强大能力。
Spiking neural networks (SNNs) are bio-inspired neural networks with asynchronous discrete and sparse characteristics, which have increasingly manifested their superiority in low energy consumption. Recent research is devoted to utilizing spatio-temporal information to directly train SNNs by backpropagation. However, the binary and non-differentiable properties of spike activities force directly trained SNNs to suffer from serious gradient vanishing and network degradation, which greatly limits the performance of directly trained SNNs and prevents them from going deeper. In this paper, we propose a multi-level firing (MLF) method based on the existing spatio-temporal back propagation (STBP) method, and spiking dormant-suppressed residual network (spiking DS-ResNet). MLF enables more efficient gradient propagation and the incremental expression ability of the neurons. Spiking DS-ResNet can efficiently perform identity mapping of discrete spikes, as well as provide a more suitable connection for gradient propagation in deep SNNs. With the proposed method, our model achieves superior performances on a non-neuromorphic dataset and two neuromorphic datasets with much fewer trainable parameters and demonstrates the great ability to combat the gradient vanishing and degradation problem in deep SNNs.