论文标题
Katz参数对节点排名的影响,并具有医疗应用
The effect of the Katz parameter on node ranking, with a medical application
论文作者
论文摘要
卡兹中心性是一种流行的网络中心度度量。从每个节点开始,所有步道的加权计数都需要(加权),而$α$的额外阻尼因子会随着长度的增加而调整步行的影响。我们介绍了一种工具,以根据其节点排名进行比较不同的中心度度量,该工具考虑到,如果它们的分数彼此误差,则通过中心度度量的两个节点的相对排名是不可靠的。我们使用此工具来了解$α$参数对大幅影响节点排名的步行长度的影响。特别是,我们在步行的长度上找到了一个上限,该界限确定节点排名到此错误余量。如果应用程序对可能的步行长度施加了现实的限制,则这组工具可能有助于确定$α$的合适值。当应用于易感性推理网络时,我们显示了$α$对排名的影响,该网络包含主题专家的知情数据,该数据代表了医疗状况的概率从一个发展到另一个。该网络是由NASA开发的医学可扩展概率风险评估工具的一部分,该工具是基于事件的风险建模工具开发的,可在太空勘探任务期间评估人类健康和医疗风险。
Katz centrality is a popular network centrality measure. It takes a (weighted) count of all walks starting at each node, with an additional damping factor of $α$ that tunes the influence of walks as lengths increase. We introduce a tool to compare different centrality measures in terms of their node rankings, which takes into account that a relative ranking of two nodes by a centrality measure is unreliable if their scores are within a margin of error of one another. We employ this tool to understand the effect of the $α$-parameter on the lengths of walks that significantly affect the ranking of nodes. In particular, we find an upper bound on the lengths of the walks that determine the node ranking up to this margin of error. If an application imposes a realistic bound on possible walk lengths, this set of tools may be helpful to determine a suitable value for $α$. We show the effect of $α$ on rankings when applied to the Susceptibility Inference Network, which contains subject matter expert informed data that represents the probabilities of medical conditions progressing from one to another. This network is part of the Medical Extensible Dynamic Probabilistic Risk Assessment Tool, developed by NASA, an event-based risk modeling tool that assesses human health and medical risk during space exploration missions.