论文标题

部分可观测时空混沌系统的无模型预测

Parallel Domain Decomposition techniques applied to Multivariate Functional Approximation of discrete data

论文作者

Mahadevan, Vijay S., Lenz, David, Grindeanu, Iulian, Peterka, Thomas

论文摘要

通过多元功能近似(MFA)紧凑地表达大型数据集(MFA)对于分析和可视化以推动科学发现至关重要。解决此类问题需要可扩展的数据分配方法来计算可符合的壁时钟时间的MFA表示。我们引入了一个完全平行的方案,以减少每项任务的总工作量,并结合基于施华兹的重叠添加剂迭代方案,以计算MFA,并通过张量扩展B型B-Spline碱基,同时保留跨子区域边界的全度连续性。虽然先前关于MFA的工作已成功地证明是有效的,但在单个过程上编码大型数据集的计算复杂性可能会严重刺激。用于从MFA生成重建的并行算法必须依靠后处理技术来混合子域边界之间的不连续性。相反,此处介绍了强大的约束最小化基础结构,以直接对MFA表示。我们证明了与域分解求解器的平行方法的有效性,以最大程度地减少解码MFA的子域误差残差,更具体地说是在规模上恢复跨非匹配边界的连续性。介绍了1-,2和3级分析和科学数据集的提出方案的分析。对于大规模数据集,还证明了广泛的强大和弱的可伸缩性性能,以评估基于MPI的算法在领导力计算机上实现的并行加速。

Compactly expressing large-scale datasets through Multivariate Functional Approximations (MFA) can be critically important for analysis and visualization to drive scientific discovery. Tackling such problems requires scalable data partitioning approaches to compute MFA representations in amenable wall clock times. We introduce a fully parallel scheme to reduce the total work per task in combination with an overlapping additive Schwarz-based iterative scheme to compute MFA with a tensor expansion of B-spline bases, while preserving full degree continuity across subdomain boundaries. While previous work on MFA has been successfully proven to be effective, the computational complexity of encoding large datasets on a single process can be severely prohibitive. Parallel algorithms for generating reconstructions from the MFA have had to rely on post-processing techniques to blend discontinuities across subdomain boundaries. In contrast, a robust constrained minimization infrastructure to impose higher-order continuity directly on the MFA representation is presented here. We demonstrate the effectiveness of the parallel approach with domain decomposition solvers, to minimize the subdomain error residuals of the decoded MFA, and more specifically to recover continuity across non-matching boundaries at scale. The analysis of the presented scheme for analytical and scientific datasets in 1-, 2- and 3-dimensions are presented. Extensive strong and weak scalability performances are also demonstrated for large-scale datasets to evaluate the parallel speedup of the MPI-based algorithm implementation on leadership computing machines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源