论文标题

完全和部分分布的量子通用弯曲器分解单位承诺问题

Fully and partially distributed Quantum Generalized Benders Decomposition for Unit Commitment Problems

论文作者

Gao, Fang, Huang, Dejian, Zhao, Ziwei, Dai, Wei, Yang, Mingyu, Gao, Qing, Pan, Yu

论文摘要

提出了一系列杂交量子经典弯曲器分解(GBD)算法,以解决集中,分布和部分分布的框架下的单位承诺(UC)问题。在集中式方法中,量子GBD将主问题(MP)转换为适合量子计算的二进制二进制优化形式。对于分布式系统,分布式共识量子GBD采用平均共识策略来将子问题重新调整为本地子问题。通过利用双重信息,构建了本地切割平面将MP分解为本地主问题(LMP)。这种方法减少了量子的开销,并解决了分区要求。提出的是由共识启发的量子GBD(CIQGBD)及其部分分布的变体D-CIQGBD提出的是基于直接优化放松变量的分配,算法构建了更合理的切割平面,从而增强了在量子量和量化过程中提高量子型HamiLty效率的最小eigenenergy间隙,并提高了计算效率。在各种UC场景下进行的广泛实验验证了上述混合算法的性能。与经典的求解器Gurobi相比,D-CIQGBD在解决IEEEE-RTS 24-BUS系统上解决安全性的UC问题方面具有速度优势。这些结果为利用量子计算进行电力系统的分布式优化提供了新的观点。

A series of hybrid quantum-classical generalized Benders decomposition (GBD) algorithms are proposed to address unit commitment (UC) problems under centralized, distributed, and partially distributed frameworks. In the centralized approach, the quantum GBD transforms the master problem (MP) into a quadratic unconstrained binary optimization form suitable for quantum computing. For distributed systems, the distributed consensus quantum GBD employs an average consensus strategy to reformulate subproblems into local subproblems. By leveraging the dual information, local cutting planes are constructed to decompose the MP into local master problems (LMPs). This approach reduces the qubit overhead and addresses the partitioning requirements. The consensus-inspired quantum GBD (CIQGBD) and its partially distributed variant, D-CIQGBD are proposed based on optimizing the allocation of relaxation variables directly, the algorithms construct more rational cutting planes, thereby enhancing the minimum eigenenergy gap of the system Hamiltonian during quantum annealing and improving the computational efficiency. Extensive experiments under various UC scenarios validate the performance of the above-mentioned hybrid algorithms. Compared to the classical solver Gurobi, D-CIQGBD demonstrates a speed advantage in solving the security-constrained UC problem on the IEEE-RTS 24-bus system. These results provide new perspectives on leveraging quantum computing for the distributed optimization of power systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源