论文标题
材料微结构的最佳控制
Optimal Control of Material Micro-Structures
论文作者
论文摘要
在本文中,我们考虑了对材料微结构的最佳控制。这样的材料微结构是由所谓的相位场模型建模的。我们研究了模型的基本物理结构,并提出了一种基于数据的方法,以进行最佳控制,并与使用最先进的增强算法(RL)算法进行了比较。仿真结果表明,最佳控制此类微结构以获得所需的材料特性和复杂的目标微结构的可行性。
In this paper, we consider the optimal control of material micro-structures. Such material micro-structures are modeled by the so-called phase field model. We study the underlying physical structure of the model and propose a data based approach for its optimal control, along with a comparison to the control using a state of the art Reinforcement Learning (RL) algorithm. Simulation results show the feasibility of optimally controlling such micro-structures to attain desired material properties and complex target micro-structures.