论文标题

特殊功能的理性函数近似$ e^{x} e_ {1}(x)$和应用于Euler-Gompertz常数$δ$的应用程序

Rational function approximations of the special function $e^{x}E_{1}(x)$ and applications to irrationality of Euler-Gompertz constant $δ$

论文作者

Murabayashi, Naoki, Yoshida, Hayato

论文摘要

在\ cite {d4}中,我们提供了一种构造函数$ f(x)的持续分数的方法:= e^{x} e_ {1}(x)$。更准确地说,我们将$ f_ {1}(x)$定义为$ f(x)$的倒数,我们将$ f_ {m}(x)$定义为`$ f_ {m-f_ {m-1}(x)$的主要项$ f_ {m-1}(x)的主要项$ f_ f_ {m-1}(m-1}(x)(x)(x)$ at infinity'''''''''的主要项。我们通过使用\ cite [essosing 2.1] {d4}计算了无穷大的$ f_ {m}(x)$的主要项。该方法类似于实数的常规持续分数扩展。 \\\\\\\\ \ \在本文中,我们证明,持续分数收敛到$ f(x)$,对于任何正实际数字$ x> 0 $,遵循证明正常持续的持续分数的正常和不合理的实际数量$α$收敛到$α$。从本质上讲,我们证明了$ q_ {m}(x)$(在定理4.1中)和不等式的不等式$ f_ {m}(x)> 0 $(在第5节中)。特别是,我们证明了$ \ displayStyle \ frac {p_ {2k}(x)} {q_ {2k}(x)} <f(x)<f(x)<\ displayStyle \ frac { $ f_ {m}(x)> 0 $),并给出两个证据。在第6节中,我们通过使用经典的laguerre polyenmial的属性来显示$ q_ {2k}(x)$和$ q_ {2k-1}(x)$之间的渐近关系。在第7节中,我们考虑Euler-Gompertz常数$δ$。据我们所知,$δ$的不合理性仍然是一个空旷的问题。我们构造一系列理性$ \ displayStyle \ frac {a_ {a {i}} {b_ {i}}} \(i = 1,2,3,\ cdots)$,使得$Δb_{i} -a__ {i} -a_ {i} {i}对于任何正整数$ i $,$ΔB_{i} -a_ {i} \ neq 0 $。因此,如果证明这种情况存在,它将完成Euler-Gompertz常数$δ$的非理性证明。

In \cite{d4}, we gave a method to construct a continued fraction of the function $F(x):=e^{x}E_{1}(x)$. More precisely we define $F_{1}(x)$ as the reciprocal of $F(x)$ and we inductively define $F_{m}(x)$ as the reciprocal of ``$F_{m-1}(x)$ minus the main term of $F_{m-1}(x)$ at infinity''. We calculated the main term of $F_{m}(x)$ at infinity by using \cite[Proposition 2.1]{d4}. This method is analogous to the regular continued fraction expansion of real numbers. \\ \ \ \ \ In this paper we prove that the continued fraction converges to $F(x)$ for any positive real number $x>0$ by following the proof of that the regular continued fraction of a positive and irrational real number $α$ converges to $α$. Essentially we prove inequalities for $Q_{m}(x)$ (in Theorem 4.1) and inequalities $F_{m}(x)>0$ (in Section 5). In particular, we prove stronger inequalities $\displaystyle\frac{P_{2k}(x)}{Q_{2k}(x)}<F(x)<\displaystyle\frac{P_{2k-1}(x)}{Q_{2k-1}(x)}$ (than $F_{m}(x)>0$) and give two proofs of these. In Section 6, we show an asymptotic relation between $Q_{2k}(x)$ and $Q_{2k-1}(x)$ by using properties of the classical Laguerre polynomial. In Section 7, we consider Euler-Gompertz constant $δ$. As far as we know, irrationality of $δ$ is still an open problem. We construct a sequence of rationals $\displaystyle\frac{A_{i}}{B_{i}}\ (i=1,2,3,\cdots)$ such that $δB_{i}-A_{i}$ approaches 0 as $i$ approaches infinity and give a sufficient condition of that $δB_{i}-A_{i}\neq 0$ for any positive integer $i$. Therefore, if it is proved that this condition holds, it completes a proof of irrationality of Euler-Gompertz constant $δ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源