论文标题
关于费米金有理保形理论的分类
On Classification of Fermionic Rational Conformal Field Theories
论文作者
论文摘要
我们系统地研究保形特征的整体如何在二维中塑造费米子有理结构理论的空间。该完整性表明,在$ \ mathrm {psl}(2,\ mathbb {z})$的主要一致性子组下,在圆环上具有旋转结构选择的共形特征应不变。不变性强烈约束中央电荷的可能值以及Neveu-Schwarz和Ramond扇区中的共形权重,从而改善了常规的霍明型模块化模块化bootstrap方法。这使我们能够在费米子有理保形理论的分类中取得很大进展,而独立字符的数量小于五。
We systematically study how the integrality of the conformal characters shapes the space of fermionic rational conformal field theories in two dimensions. The integrality suggests that conformal characters on torus with a given choice of spin structures should be invariant under a principal congruence subgroup of $\mathrm{PSL}(2,\mathbb{Z})$. The invariance strongly constrains the possible values of the central charge as well as the conformal weights in both Neveu-Schwarz and Ramond sectors, which improves the conventional holomorphic modular bootstrap method in a significant manner. This allows us to make much progress on the classification of fermionic rational conformal field theories with the number of independent characters less than five.