论文标题
联合语义角色和原始角色标签的多任务学习
Multi-Task Learning for Joint Semantic Role and Proto-Role Labeling
论文作者
论文摘要
我们提出了一个端到端的多步机学习模型,该模型共同标记了Dowty(1991)的语义角色和原始功能,并给出了一个句子和其中的谓词。我们最好的架构首先学习论点跨越,然后学习论点的句法头。这些信息与预测语义角色和原始功能的下一步共享。我们还试验从论证和头部预测到角色和原始角色标记的转移学习。我们将使用静态和上下文嵌入的文字,参数和句子进行比较。与以前的工作不同,我们的模型不需要对其他任务进行预训练或微调,而不是使用现成(静态或上下文)嵌入和监督。它还不需要论证跨度,其语义角色和/或他们的黄金句法头是附加的输入,因为它学会了在训练过程中预测所有这些。我们的多任务学习模型提高了大多数原始功能的最新预测。
We put forward an end-to-end multi-step machine learning model which jointly labels semantic roles and the proto-roles of Dowty (1991), given a sentence and the predicates therein. Our best architecture first learns argument spans followed by learning the argument's syntactic heads. This information is shared with the next steps for predicting the semantic roles and proto-roles. We also experiment with transfer learning from argument and head prediction to role and proto-role labeling. We compare using static and contextual embeddings for words, arguments, and sentences. Unlike previous work, our model does not require pre-training or fine-tuning on additional tasks, beyond using off-the-shelf (static or contextual) embeddings and supervision. It also does not require argument spans, their semantic roles, and/or their gold syntactic heads as additional input, because it learns to predict all these during training. Our multi-task learning model raises the state-of-the-art predictions for most proto-roles.