论文标题

Feynman Checkers:数字理论属性

Feynman checkers: number-theoretic properties

论文作者

Kuyanov, Fedor, Slizkov, Alexey

论文摘要

我们研究Feynman Checkers,这是R. Feynman引入的电子运动的基本模型。在此型号中,一个棋盘在棋盘上移动,我们计算转弯。 Feynman Checkers也被称为一维量子步行。我们证明了该模型中一些新的数字理论结果,例如,在特定区域中电子波函数的真实部分和虚构部分的符号交替。我们所有的结果都可以用年轻的图表来说明,即,我们比较了奇数和偶数步骤的年轻图的数量。

We study Feynman checkers, an elementary model of electron motion introduced by R. Feynman. In this model, a checker moves on a checkerboard, and we count the turns. Feynman checkers are also known as a one-dimensional quantum walk. We prove some new number-theoretic results in this model, for example, sign alternation of the real and imaginary parts of the electron wave function in a specific area. All our results can be stated in terms of Young diagrams, namely, we compare the number of Young diagrams with an odd and an even number of steps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源