论文标题
noether-lefschetz模量k3表面的理性点
Rational points in the Noether-Lefschetz locus of moduli spaces of K3 surfaces
论文作者
论文摘要
在本文中,我们研究了由Prime指数的sublattices引起的晶格偏振K3表面的模量空间之间的地图。我们表明这些地图可用于确定模量空间的理性点是否属于Noether-Lefschetz基因座。作为一种应用,我们证明了Bombieri-lang的猜想意味着正如Shafarevich的猜想所预测的那样,Noether-Lefschetz基因座中理性点的非密度陈述。
In this paper, we study maps between moduli spaces of lattice-polarized K3 surfaces induced by sublattices of prime index. We show that these maps can be used to determine if a rational point of the moduli space belongs to the Noether-Lefschetz locus. As an application, we prove that the Bombieri-Lang conjecture implies non-density statements for the rational points in the Noether-Lefschetz locus, as predicted by a conjecture of Shafarevich.