论文标题

Metafill:在异质信息网络上生成元路径的文本填充

MetaFill: Text Infilling for Meta-Path Generation on Heterogeneous Information Networks

论文作者

Liu, Zequn, Duan, Kefei, Yang, Junwei, Xu, Hanwen, Zhang, Ming, Wang, Sheng

论文摘要

异构信息网络(HIN)对于研究包含多种边缘类型和节点类型的复杂网络至关重要。元路径是一系列节点类型和边缘类型,是嵌入HIN的核心技术。由于手动策划的元路径很耗时,因此有迫切需要开发自动化的元路径生成方法。现有的元路径生成方法无法完全利用HIN的丰富文本信息,例如节点名称和边缘类型名称。为了解决这个问题,我们提出了Metafill,这是一种基于文本的元路径生成方法。 Metafill的关键思想是将元路径识别问题作为单词序列填充问题,可以通过验证的语言模型(PLM)提出。我们观察到元法对现有的元路径生成方法和图形嵌入方法的卓越性能,这些方法在两个现实世界中的HIN数据集中链接预测和节点分类中不利用元路径。我们进一步证明了Metafill如何在零拍设置中准确地对边缘进行分类,而现有方法无法生成任何元路径。 Metafill利用PLM生成用于图形嵌入的元路径,为图形分析中的语言模型应用开放了新的途径。

Heterogeneous Information Network (HIN) is essential to study complicated networks containing multiple edge types and node types. Meta-path, a sequence of node types and edge types, is the core technique to embed HINs. Since manually curating meta-paths is time-consuming, there is a pressing need to develop automated meta-path generation approaches. Existing meta-path generation approaches cannot fully exploit the rich textual information in HINs, such as node names and edge type names. To address this problem, we propose MetaFill, a text-infilling-based approach for meta-path generation. The key idea of MetaFill is to formulate meta-path identification problem as a word sequence infilling problem, which can be advanced by Pretrained Language Models (PLMs). We observed the superior performance of MetaFill against existing meta-path generation methods and graph embedding methods that do not leverage meta-paths in both link prediction and node classification on two real-world HIN datasets. We further demonstrated how MetaFill can accurately classify edges in the zero-shot setting, where existing approaches cannot generate any meta-paths. MetaFill exploits PLMs to generate meta-paths for graph embedding, opening up new avenues for language model applications in graph analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源