论文标题

关于拉回抛物线矢量束的稳定性

On the stability of pulled back parabolic vector bundles

论文作者

Biswas, Indranil, Kumar, Manish, Parameswaran, A. J.

论文摘要

采用在特征零的代数封闭字段上定义的不可约的光滑投影曲线$ x $,并确定其有限的许多独特点$ d \,= \,\ {x_1,\,\,\ cdots,\ cdots,\,\,x_n \} $;对于每个点$ x \,\ in \,d $修复正整数$ n_x $。从不可约的光滑投影曲线中获取非稳定地图$ f \,:\,y \,\ longrightArrow \,x $。我们使用$(d,d,\,\,\ {n_x \} _ {x \ {x \ in d})构建了一个天然子捆$ \ Mathcal {f} \,\ subset \,f _*{\ Mathcal O} _y $ $。令$ e _*$为稳定的抛物线矢量束,其每个$ x \,\ in \ in \,d $在$ \ frac {1} {n_x} $中的积分倍数。我们证明,如果$ {\ rm rank}(\ Mathcal {f})\,= \,1 $,请抛物$ f^*e _*$也是抛物线稳定的。

Take an irreducible smooth projective curve $X$ defined over an algebraically closed field of characteristic zero, and fix finitely many distinct point $D\, =\, \{x_1,\, \cdots,\, x_n\}$ of it; for each point $x\, \in\, D$ fix a positive integer $N_x$. Take a nonconstant map $f\, :\, Y\, \longrightarrow \, X$ from an irreducible smooth projective curve. We construct a natural subbundle $\mathcal{F}\, \subset\, f_*{\mathcal O}_Y$ using $(D,\, \{N_x\}_{x\in D})$. Let $E_*$ be a stable parabolic vector bundle whose parabolic weights at each $x\, \in\, D$ are integral multiples of $\frac{1}{N_x}$. We prove that the pullback $f^*E_*$ is also parabolic stable, if ${\rm rank}(\mathcal{F})\,=\, 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源