论文标题
关于de Finetti在Poisson观察中的控制:马尔可夫添加剂模型中双重障碍策略的最佳性
On De Finetti's control under Poisson observations: optimality of a double barrier strategy in a Markov additive model
论文作者
论文摘要
在本文中,我们考虑了De Finetti在马尔可夫添加剂模型下的最佳股息和资本注入问题。我们假设股息和资本注射之前的盈余过程遵循了马尔可夫添加剂的频谱。股息支付仅在独立泊松过程的跳跃时间进行。需要在需要时注入首都,以确保避免破产的非负盈余过程。我们的目的是表征最佳的周期性股息和资本注入策略,以最大化预期的总折扣股息,这些股息被资本注入的总折现成本减去。为此,我们首先考虑一个辅助最佳的周期性股息和资本注入问题,并在单个频谱积极的莱维过程中获得最终回报,并猜测最佳策略是双重障碍策略。利用频谱正lévy过程的波动理论和偏移理论方法以及控制理论的汉密尔顿 - 雅各比 - 贝尔曼不平等方法,我们能够验证某些双重障碍周期性股息和资本注入策略解决辅助问题的猜想。通过辅助控制问题的结果以及动态编程原则引起的递归迭代的固定点论点,政权调制的双重障碍周期性股息和资本注入策略的最佳性证明了我们的目标控制问题。
In this paper we consider the De Finetti's optimal dividend and capital injection problem under a Markov additive model. We assume that the surplus process before dividends and capital injections follows a spectrally positive Markov additive process. Dividend payments are made only at the jump times of an independent Poisson process. Capitals are required to be injected whenever needed to ensure a non-negative surplus process to avoid bankruptcy. Our purpose is to characterize the optimal periodic dividend and capital injection strategy that maximizes the expected total discounted dividends subtracted by the total discounted costs of capital injection. To this end, we first consider an auxiliary optimal periodic dividend and capital injection problem with final payoff under a single spectrally positive Lévy process and conjecture that the optimal strategy is a double barrier strategy. Using the fluctuation theory and excursion-theoretical approach of the spectrally positive Lévy process and the Hamilton-Jacobi-Bellman inequality approach of the control theory, we are able to verify the conjecture that some double barrier periodic dividend and capital injection strategy solves the auxiliary problem. With the results for the auxiliary control problem and a fixed point argument for recursive iterations induced by the dynamic programming principle, the optimality of a regime-modulated double barrier periodic dividend and capital injection strategy is proved for our target control problem.