论文标题
分布式分布在非凸目标上优化可靠的优化
Distributed Distributionally Robust Optimization with Non-Convex Objectives
论文作者
论文摘要
旨在找到一个最佳决策,以最大程度地减少概率分布的含糊不清的最糟糕成本,以最大程度地应用了分配性强大的优化(DRO),已广泛应用于不同的应用中,例如,网络行为分析,风险管理,风险管理等。但是,现有的DRO技术面临三个关键挑战:1)如何处理分布式环境中的分布式环境; 2)如何有效利用先验分布; 3)如何根据不同的情况正确调整鲁棒性程度。为此,我们提出了一种异步分布式算法,该算法称为异步单环替代梯度投影(ASPIRE)算法,采用迭代活性集方法(sibe)来解决分布式分布的强大优化(DDRO)问题。此外,开发了一个新的不确定性集,即受约束的D-norm不确定性集,以有效利用先前的分布并灵活地控制鲁棒性的程度。最后,我们的理论分析阐明了所提出的算法可以融合,还分析了迭代复杂性。对现实世界数据集的广泛经验研究表明,该提出的方法不仅可以实现快速的收敛,而且还可以抵抗数据异质性和恶意攻击,而且还可以在绩效方面进行权衡的稳健性。
Distributionally Robust Optimization (DRO), which aims to find an optimal decision that minimizes the worst case cost over the ambiguity set of probability distribution, has been widely applied in diverse applications, e.g., network behavior analysis, risk management, etc. However, existing DRO techniques face three key challenges: 1) how to deal with the asynchronous updating in a distributed environment; 2) how to leverage the prior distribution effectively; 3) how to properly adjust the degree of robustness according to different scenarios. To this end, we propose an asynchronous distributed algorithm, named Asynchronous Single-looP alternatIve gRadient projEction (ASPIRE) algorithm with the itErative Active SEt method (EASE) to tackle the distributed distributionally robust optimization (DDRO) problem. Furthermore, a new uncertainty set, i.e., constrained D-norm uncertainty set, is developed to effectively leverage the prior distribution and flexibly control the degree of robustness. Finally, our theoretical analysis elucidates that the proposed algorithm is guaranteed to converge and the iteration complexity is also analyzed. Extensive empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, and remain robust against data heterogeneity as well as malicious attacks, but also tradeoff robustness with performance.