论文标题
通过显着感知的动态路由策略,轻巧的遥感图像的无步数超分辨率
Lightweight Stepless Super-Resolution of Remote Sensing Images via Saliency-Aware Dynamic Routing Strategy
论文作者
论文摘要
基于深度学习的算法大大改善了遥感图像(RSI)超分辨率(SR)的性能。但是,增加网络深度和参数会导致巨大的计算和存储负担。直接降低现有模型的深度或宽度会导致性能下降。我们观察到,RSI中不同区域的SR难度差异很大,并且现有方法使用相同的深网处理图像中的所有区域,从而导致浪费计算资源。此外,现有的SR方法通常预先定义整数尺度因子,并且无法执行无梯级SR,即单个模型可以处理任何潜在的尺度因子。在每个比例因子废物上重述模型,大量的计算资源和模型存储空间。为了解决上述问题,我们建议使用RSIS轻量级和无步级SR的显着性动态路由网络(SALDRN)。首先,我们将视觉显着性作为区域级SR难度的指标,并将轻质显着性检测器整合到Saldrn中以捕获像素级的视觉特征。然后,我们设计了一种显着性动态路由策略,该策略采用路径选择开关来适应性地选择适当深度的特征提取路径,该路径根据子图像贴剂的SR难度。最后,我们提出了一个新颖的轻巧无步进的UP采样模块,其核心是一种隐含的特征功能,用于实现从低分辨率特征空间到高分辨率特征空间的映射。全面的实验验证了SALDRN可以在性能和复杂性之间实现良好的权衡。该代码可在\ url {https://github.com/hanlinwu/saldrn}中获得。
Deep learning-based algorithms have greatly improved the performance of remote sensing image (RSI) super-resolution (SR). However, increasing network depth and parameters cause a huge burden of computing and storage. Directly reducing the depth or width of existing models results in a large performance drop. We observe that the SR difficulty of different regions in an RSI varies greatly, and existing methods use the same deep network to process all regions in an image, resulting in a waste of computing resources. In addition, existing SR methods generally predefine integer scale factors and cannot perform stepless SR, i.e., a single model can deal with any potential scale factor. Retraining the model on each scale factor wastes considerable computing resources and model storage space. To address the above problems, we propose a saliency-aware dynamic routing network (SalDRN) for lightweight and stepless SR of RSIs. First, we introduce visual saliency as an indicator of region-level SR difficulty and integrate a lightweight saliency detector into the SalDRN to capture pixel-level visual characteristics. Then, we devise a saliency-aware dynamic routing strategy that employs path selection switches to adaptively select feature extraction paths of appropriate depth according to the SR difficulty of sub-image patches. Finally, we propose a novel lightweight stepless upsampling module whose core is an implicit feature function for realizing mapping from low-resolution feature space to high-resolution feature space. Comprehensive experiments verify that the SalDRN can achieve a good trade-off between performance and complexity. The code is available at \url{https://github.com/hanlinwu/SalDRN}.