论文标题
指数积分器的$μ$ mode方法:$φ$ - 符合Kronecker总和的操作
A $μ$-mode approach for exponential integrators: actions of $φ$-functions of Kronecker sums
论文作者
论文摘要
我们提出了一种计算kronecker sum $ k $ d $ d $ d $ duntary矩阵$a_μ$的指数状$φ$ functions的方法。它基于高斯正交公式与缩放和平方技术相结合的$φ$函数的积分表示的近似。我们称之为PHIKS的结果算法通过涉及小型矩阵$A_μ$的指数级的$μ$模式产品来评估所需的操作,而不会形成大尺寸的矩阵$ k $本身。从高效的3级Blas中获利的Phiks旨在计算在同一向量上应用的不同$φ$ - 功能或在不同矢量上应用的$φ$ - 函数的线性组合。此外,由于基本的缩放和平方技术,所需的数量可以在合适的时间尺度上同时使用。所有这些功能允许在指数集成环境中有效使用PHIK。实际上,与最新的计算$φ$ contuntions的操作相比,我们新设计的方法已在流行的指数runge上进行了测试 - 一到四的刚度刚度积分器。具有离散的半线性进化2D或3D对流的数值实验 - 扩散 - 反应,allen--cahn和Brusselator方程,显示了所提出的$μ$ mode方法的优越性。
We present a method for computing actions of the exponential-like $φ$-functions for a Kronecker sum $K$ of $d$ arbitrary matrices $A_μ$. It is based on the approximation of the integral representation of the $φ$-functions by Gaussian quadrature formulas combined with a scaling and squaring technique. The resulting algorithm, which we call PHIKS, evaluates the required actions by means of $μ$-mode products involving exponentials of the small sized matrices $A_μ$, without forming the large sized matrix $K$ itself. PHIKS, which profits from the highly efficient level 3 BLAS, is designed to compute different $φ$-functions applied on the same vector or a linear combination of actions of $φ$-functions applied on different vectors. In addition, thanks to the underlying scaling and squaring techniques, the desired quantities are available simultaneously at suitable time scales. All these features allow the effective usage of PHIKS in the exponential integration context. In fact, our newly designed method has been tested on popular exponential Runge--Kutta integrators of stiff order from one to four, in comparison with state-of-the-art algorithms for computing actions of $φ$-functions. The numerical experiments with discretized semilinear evolutionary 2D or 3D advection--diffusion--reaction, Allen--Cahn, and Brusselator equations show the superiority of the proposed $μ$-mode approach.