论文标题
通过Fisher信息识别平均量子电位会导致牢固的不确定性关系
The identification of mean quantum potential with Fisher information leads to a strong uncertainty relation
论文作者
论文摘要
通过经典的Fisher信息满足了信息理论中的一个关键数量的Cramer-Rao绑定,在不同的情况下显示了量子力学的Heisenberg不确定性原理。在本文中,我们表明,通过Fisher Information,通过Cramer-Rao绑定的Fisher Information的平均量子电位的识别,这是一个不确定性原理,通常比Heisenberg和Heisenberg和Robertson-Schrodinger不确定的不确定性关系,可以实验地识别效力。
The Cramer-Rao bound, satisfied by classical Fisher information, a key quantity in information theory, has been shown in different contexts to give rise to the Heisenberg uncertainty principle of quantum mechanics. In this paper, we show that the identification of the mean quantum potential, an important notion in Bohmian mechanics, with the Fisher information, leads, through the Cramer-Rao bound, to an uncertainty principle which is stronger, in general, than both Heisenberg and Robertson-Schrodinger uncertainty relations, allowing to experimentally test the validity of such an identification.