论文标题

学会在Airbnb排名

Learning To Rank Diversely At Airbnb

论文作者

Haldar, Malay, Abdool, Mustafa, He, Liwei, Davis, Dillon, Gao, Huiji, Katariya, Sanjeev

论文摘要

Airbnb是一个双面市场,将拥有租金名单的房东与来自全球的潜在客人一起。将基于神经网络的学习应用于等级技术,已导致与主机相匹配的匹配来源。这些排名的改进是由核心策略驱动的:通过其估计的预订概率订购清单,然后迭代技术,以使这些预订概率估计越来越准确。在此策略中隐含地嵌入的是一个假设,即可以独立于搜索结果中的其他清单来确定清单的预订概率。在本文中,我们讨论了这个假设在整个普遍使用的学习中对框架进行排名的假设是错误的。我们提供了一个理论基础,以纠正这一假设,然后根据理论有效的神经网络体系结构。明确考虑清单之间可能的相似性,并减少它们以多元化搜索结果产生了强烈的积极影响。我们将讨论这些度量的胜利,这是该理论在线A/B测试的一部分。我们的方法为大规模生产排名系统的搜索结果多样化提供了一种实用的方法。

Airbnb is a two-sided marketplace, bringing together hosts who own listings for rent, with prospective guests from around the globe. Applying neural network-based learning to rank techniques has led to significant improvements in matching guests with hosts. These improvements in ranking were driven by a core strategy: order the listings by their estimated booking probabilities, then iterate on techniques to make these booking probability estimates more and more accurate. Embedded implicitly in this strategy was an assumption that the booking probability of a listing could be determined independently of other listings in search results. In this paper we discuss how this assumption, pervasive throughout the commonly-used learning to rank frameworks, is false. We provide a theoretical foundation correcting this assumption, followed by efficient neural network architectures based on the theory. Explicitly accounting for possible similarities between listings, and reducing them to diversify the search results generated strong positive impact. We discuss these metric wins as part of the online A/B tests of the theory. Our method provides a practical way to diversify search results for large-scale production ranking systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源