论文标题
需要两个知道一个:从有效的两点PDF模型中计算准确的单点PDF协方差
It takes two to know one: Computing accurate one-point PDF covariances from effective two-point PDF models
论文作者
论文摘要
宇宙物质密度的单点概率分布函数(PDF)是强大的宇宙学探针,可提取物质分布的非高斯特性和补体两点统计。计算单点PDF的协方差是为即将进行的调查(例如欧几里得和鲁宾天文台LSST)构建强大的星系调查分析的关键,并且需要对三点PDF进行表征空间相关的良好模型。在这项工作中,我们使用有效移动的对数正态的两点PDF模型来获得准确的PDF协方差,以进行轻度的非高斯弱透镜收敛,并验证我们针对高斯和非高斯图的大型预测。我们展示了如何捕获超级样本协方差的协方差矩阵中的主要效应是由两点PDF的大分离扩展产生的,并讨论了从小斑块获得的协方差和全天空图获得的协方差之间的差异。最后,我们描述了如何扩展形式主义以使用3D Matter PDF作为一个例子来表征3D维光谱领域的PDF协方差。我们描述了如何通过依赖于针对单独的宇宙样式模拟验证的理论预测来补充具有固定总密度的模拟框的协方差。
One-point probability distribution functions (PDFs) of the cosmic matter density are powerful cosmological probes that extract non-Gaussian properties of the matter distribution and complement two-point statistics. Computing the covariance of one-point PDFs is key for building a robust galaxy survey analysis for upcoming surveys like Euclid and the Rubin Observatory LSST and requires good models for the two-point PDFs characterising spatial correlations. In this work, we obtain accurate PDF covariances using effective shifted lognormal two-point PDF models for the mildly non-Gaussian weak lensing convergence and validate our predictions against large sets of Gaussian and non-Gaussian maps. We show how the dominant effects in the covariance matrix capturing super-sample covariance arise from a large-separation expansion of the two-point PDF and discuss differences between the covariances obtained from small patches and full sky maps. Finally, we describe how our formalism can be extended to characterise the PDF covariance for 3D-dimensional spectroscopic fields using the 3D matter PDF as an example. We describe how covariances from simulated boxes with fixed overall density can be supplemented with the missing super-sample covariance effect by relying on theoretical predictions validated against separate-universe style simulations.