论文标题

分层政策融合为反应机器人控制的推断

Hierarchical Policy Blending as Inference for Reactive Robot Control

论文作者

Hansel, Kay, Urain, Julen, Peters, Jan, Chalvatzaki, Georgia

论文摘要

杂乱,密集和动态环境中的运动产生是机器人技术中的一个核心主题,它被视为多目标决策问题。当前的方法在安全性和性能之间进行权衡。一方面,反应性策略保证了对环境变化的快速响应,其风险次优行为。另一方面,基于计划的运动产生提供可行的轨迹,但是高计算成本可能会限制控制频率,从而限制安全性。为了结合反应性政策和计划的好处,我们提出了一种分层运动生成方法。此外,我们采用概率推理方法来形式化分层模型和随机优化。我们将这种方法视为随机,反应性专家政策的加权产品,在该政策中,计划用于适应任务范围内的最佳权重。这种随机优化避免了局部优势,并提出了可行的反应性计划,以在混乱且密集的环境中找到路径。我们在平面导航和6DOF操作中进行的广泛实验研究表明,我们提出的层次运动生成方法的表现优于近视反应性控制器和在线重新规划方法。

Motion generation in cluttered, dense, and dynamic environments is a central topic in robotics, rendered as a multi-objective decision-making problem. Current approaches trade-off between safety and performance. On the one hand, reactive policies guarantee fast response to environmental changes at the risk of suboptimal behavior. On the other hand, planning-based motion generation provides feasible trajectories, but the high computational cost may limit the control frequency and thus safety. To combine the benefits of reactive policies and planning, we propose a hierarchical motion generation method. Moreover, we adopt probabilistic inference methods to formalize the hierarchical model and stochastic optimization. We realize this approach as a weighted product of stochastic, reactive expert policies, where planning is used to adaptively compute the optimal weights over the task horizon. This stochastic optimization avoids local optima and proposes feasible reactive plans that find paths in cluttered and dense environments. Our extensive experimental study in planar navigation and 6DoF manipulation shows that our proposed hierarchical motion generation method outperforms both myopic reactive controllers and online re-planning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源