论文标题

文本检测忘记了文档OCR

Text Detection Forgot About Document OCR

论文作者

Olejniczak, Krzysztof, Šulc, Milan

论文摘要

从扫描和其他图像中的文本检测和识别,通常表示为光学特征识别(OCR),是一种广泛使用的自动文档处理形式,并具有多种可用的方法。然而,OCR系统仍然无法达到100%的准确性,需要在正确读数至关重要的应用中进行人体校正。机器学习的进步使文本检测和识别“野外”的方案更具挑战性,例如从复杂场景照片中检测到对象上的文本。虽然通常在复杂场景上评估了野外文本识别的最新方法,但通常不会发布它们在文档领域的性能,并且缺少与文档OCR的方法进行全面比较。本文比较了用于野外文本识别和文档文本识别的几种方法,并提供了他们对结构化文档领域的评估。结果表明,最初为野外文本检测提出的最新方法还可以在文档文本检测方面取得竞争成果,表现优于可用的OCR方法。我们认为,在评估文本检测和识别方法时,不应省略文档OCR的应用。

Detection and recognition of text from scans and other images, commonly denoted as Optical Character Recognition (OCR), is a widely used form of automated document processing with a number of methods available. Yet OCR systems still do not achieve 100% accuracy, requiring human corrections in applications where correct readout is essential. Advances in machine learning enabled even more challenging scenarios of text detection and recognition "in-the-wild" - such as detecting text on objects from photographs of complex scenes. While the state-of-the-art methods for in-the-wild text recognition are typically evaluated on complex scenes, their performance in the domain of documents is typically not published, and a comprehensive comparison with methods for document OCR is missing. This paper compares several methods designed for in-the-wild text recognition and for document text recognition, and provides their evaluation on the domain of structured documents. The results suggest that state-of-the-art methods originally proposed for in-the-wild text detection also achieve competitive results on document text detection, outperforming available OCR methods. We argue that the application of document OCR should not be omitted in evaluation of text detection and recognition methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源