论文标题

基于自动编码器的异常检测并解释了工业冷却系统中的故障定位

Autoencoder based Anomaly Detection and Explained Fault Localization in Industrial Cooling Systems

论文作者

Holly, Stephanie, Heel, Robin, Katic, Denis, Schoeffl, Leopold, Stiftinger, Andreas, Holzner, Peter, Kaufmann, Thomas, Haslhofer, Bernhard, Schall, Daniel, Heitzinger, Clemens, Kemnitz, Jana

论文摘要

大型工业冷却系统中的异常检测非常具有挑战性,这是由于数据维度高,传感器记录不一致以及缺乏标签。这些系统中自动异常检测的最新技术通常依赖于专家知识和阈值。但是,查看数据是孤立且复杂的,多元关系被忽略了。在这项工作中,我们提出了一个基于自动编码器的端到端工作流,用于适用于大型工业冷却系统中的多元时间序列数据,包括基于专家知识的解释故障定位和根本原因分析。我们使用阈值在总重建误差(包括所有传感器信号(包括所有传感器信号))上识别系统故障。对于故障定位,我们计算单个重建误差(每个传感器信号的自动编码器重建误差),使我们能够确定对总重建误差最大的信号。通过查找表提供了专业知识,从而为受影响的子系统提供了根本原因分析和分配。我们使用4倍的交叉验证方法在冷却系统单元中演示了我们的发现,包括34个传感器,并根据域专家提供的阈值自动创建标签。使用4倍的交叉验证,我们达到了0.56的F1评分,而自动编码器结果显示出更高的一致性评分(CS为0.92),而自动创建的标签(CS为0.62),表明异常以非常稳定的方式识别。主要异常是由自动编码器发现的,并自动创建了标签,并且还记录在日志文件中。此外,解释的故障定位以非常一致的方式强调了主要异常的最大影响。

Anomaly detection in large industrial cooling systems is very challenging due to the high data dimensionality, inconsistent sensor recordings, and lack of labels. The state of the art for automated anomaly detection in these systems typically relies on expert knowledge and thresholds. However, data is viewed isolated and complex, multivariate relationships are neglected. In this work, we present an autoencoder based end-to-end workflow for anomaly detection suitable for multivariate time series data in large industrial cooling systems, including explained fault localization and root cause analysis based on expert knowledge. We identify system failures using a threshold on the total reconstruction error (autoencoder reconstruction error including all sensor signals). For fault localization, we compute the individual reconstruction error (autoencoder reconstruction error for each sensor signal) allowing us to identify the signals that contribute most to the total reconstruction error. Expert knowledge is provided via look-up table enabling root-cause analysis and assignment to the affected subsystem. We demonstrated our findings in a cooling system unit including 34 sensors over a 8-months time period using 4-fold cross validation approaches and automatically created labels based on thresholds provided by domain experts. Using 4-fold cross validation, we reached a F1-score of 0.56, whereas the autoencoder results showed a higher consistency score (CS of 0.92) compared to the automatically created labels (CS of 0.62) -- indicating that the anomaly is recognized in a very stable manner. The main anomaly was found by the autoencoder and automatically created labels and was also recorded in the log files. Further, the explained fault localization highlighted the most affected component for the main anomaly in a very consistent manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源