论文标题
3D聚焦立方Quintic非线性Schrodinger方程的阈值解决方案在低频
Threshold solutions for the 3D focusing cubic-quintic nonlinear Schrodinger equation at low frequencies
论文作者
论文摘要
本文介绍了三个空间尺寸的聚焦三次非线性schrodinger方程。尤其是,我们研究了解决方案的全球动力学,其能量和质量等于Duyckaerts和Merle(2009年)中的基态的质量。当我们尝试获得相应的结果时,由于立方骨折的非线性,我们遇到了一些困难。我们通过使用Nakanishi和Schlag(2012)开发的一通定理(无返回定理)来克服它们。
This paper addresses the focusing cubic-quintic nonlinear Schrodinger equation in three space dimensions. Especially, we study the global dynamics of solutions whose energy and mass equal to those of the ground state in the sprits of Duyckaerts and Merle (2009). When we try to obtain the corresponding result, we meet several difficulties due to the cubic-quintic nonlinearity. We overcome them by using the one-pass theorem (no return theorem) developed by Nakanishi and Schlag (2012).