论文标题

一种稀疏的光谱方法,用于单空间维度的分数微分方程

A sparse spectral method for fractional differential equations in one-spatial dimension

论文作者

Papadopoulos, Ioannis P. A., Olver, Sheehan

论文摘要

我们为一类分数微分方程开发了一种稀疏的光谱方法,该方法在一个维度上在$ \ mathbb {r} $上提出。这些方程可以包括SQRT-Laplacian,Hilbert,衍生和身份术语。该数值方法利用了由第二种的加权Chebyshev多项式和希尔伯特转换组成的基础。前者的功能得到$ [-1,1] $的支持,而后者则得到全球支持。全局近似空间可以包含基础的不同仿射转换,将$ [-1,1] $映射到其他间隔。值得注意的是,不仅诱导的线性系统稀疏,而且运算符将不同的仿射转换分解。 Hence, the solve reduces to solving $K$ independent sparse linear systems of size $\mathcal{O}(n)\times \mathcal{O}(n)$, with $\mathcal{O}(n)$ nonzero entries, where $K$ is the number of different intervals and $n$ is the highest polynomial degree contained in the sum space.这导致$ \ Mathcal {O}(n)$复杂性解决。考虑到分数热和波动方程的应用。

We develop a sparse spectral method for a class of fractional differential equations, posed on $\mathbb{R}$, in one dimension. These equations can include sqrt-Laplacian, Hilbert, derivative and identity terms. The numerical method utilizes a basis consisting of weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert transforms. The former functions are supported on $[-1,1]$ whereas the latter have global support. The global approximation space can contain different affine transformations of the basis, mapping $[-1,1]$ to other intervals. Remarkably, not only are the induced linear systems sparse, but the operator decouples across the different affine transformations. Hence, the solve reduces to solving $K$ independent sparse linear systems of size $\mathcal{O}(n)\times \mathcal{O}(n)$, with $\mathcal{O}(n)$ nonzero entries, where $K$ is the number of different intervals and $n$ is the highest polynomial degree contained in the sum space. This results in an $\mathcal{O}(n)$ complexity solve. Applications to fractional heat and wave equations are considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源