论文标题

物理阻力系数的随机建模 - 其对轨道预测和空间交通管理的影响

Stochastic modeling of physical drag coefficient -- its impact on orbit prediction and space traffic management

论文作者

Paul, Smriti Nandan, Sheridan, Phillip Logan, Licata, Richard J., Mehta, Piyush M.

论文摘要

商业实体的雄心勃勃的卫星星座项目以及近期易于进入空间的便利性导致了低地球太空交通的急剧增长。它危害了空间安全性和长期可持续性,因此需要更好的太空交通管理(STM)。在力模型和轨道状态下,正确建模不确定性是STM的重要组成部分。对于低地球轨道(LEO)区域中的物体,轨道动力学的不确定性主要来自对大气阻力相关参数和变量的有限知识。在本文中,Paul等人的作品扩展了。 [2021],我们开发了一种馈入深度神经网络模型,用于预测卫星式卫星态度的卫星阻力系数(即$ -90^0 $,$+90^0 $)in $ -90^0 $,$+90^0 $)和卫星yaw yaw yaw $ \ in $ 0^0^0^0^0 $,$,$+360^0 $ 360^0 $))。该模型同时预测了平均值和标准偏差,并且经过良好的校准。我们使用数值模拟的物理阻力系数数据来训练我们的神经网络。使用不完整的可容纳气体表面相互作用模型的漫射反射使用测试粒子蒙特卡洛方法进行数值模拟。建模是针对著名的挑战性迷你卫星有效载荷(Champ)卫星进行的。最后,我们使用蒙特卡洛方法在三天的各种建模方案下在三天的时间内传播冠军,以研究由阻力系数不确定性引起的径向,轨道和跨轨道轨道误差的分布。

Ambitious satellite constellation projects by commercial entities and the ease of access to space in recent times have led to a dramatic proliferation of low-Earth space traffic. It jeopardizes space safety and long-term sustainability, necessitating better space traffic management (STM). Correct modeling of uncertainties in force models and orbital states, among other things, is an essential part of STM. For objects in the low-Earth orbit (LEO) region, the uncertainty in the orbital dynamics mainly emanate from limited knowledge of the atmospheric drag-related parameters and variables. In this paper, which extends the work by Paul et al. [2021], we develop a feed-forward deep neural network model for the prediction of the satellite drag coefficient for the full range of satellite attitude (i.e., satellite pitch $\in$ ($-90^0$, $+90^0$) and satellite yaw $\in$ ($0^0$, $+360^0$)). The model simultaneously predicts the mean and the standard deviation and is well-calibrated. We use numerically simulated physical drag coefficient data for training our neural network. The numerical simulations are carried out using the test particle Monte Carlo method using the diffuse reflection with incomplete accommodation gas-surface interaction model. Modeling is carried out for the well-known CHAllenging Minisatellite Payload (CHAMP) satellite. Finally, we use the Monte Carlo approach to propagate CHAMP over a three-day period under various modeling scenarios to investigate the distribution of radial, in-track, and cross-track orbital errors caused by drag coefficient uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源