论文标题
复杂社会系统的数据驱动建模的入门
A primer on data-driven modeling of complex social systems
论文作者
论文摘要
道路上的交通拥堵,社交媒体上的回声室,搬家的行人人群以及选举期间的舆论动态都是复杂的社交系统。这些应用似乎不同,但是从数学角度来看,它们激励的一些问题与众不同。在这些示例中,研究人员试图发现个体代理人(无论是驾驶员,Twitter帐户,行人还是选民)如何进行互动。通过更好地理解这些相互作用,数学建模者可以对当代理改变其行为时会出现的组级特征做出预测。在我在2021年美国数学社会简短课程中的讲座的基础上,我介绍了构建此类数据驱动模型时出现的一些术语,方法和选择。我讨论了统计或数学,静态或动态,空间或非空间,离散或连续的模型之间的差异,以及现象学或机械。为了具体,我还更详细地描述了两个复杂系统的模型,选举动力学和行人行动。通过一种概念的方法,我广泛强调了建立和校准模型,选择复杂性以及使用定量和定性数据时出现的一些挑战。
Traffic jams on roadways, echo chambers on social media, crowds of moving pedestrians, and opinion dynamics during elections are all complex social systems. These applications may seem disparate, but some of the questions that they motivate are similar from a mathematical perspective. Across these examples, researchers seek to uncover how individual agents -- whether drivers, Twitter accounts, pedestrians, or voters -- are interacting. By better understanding these interactions, mathematical modelers can make predictions about the group-level features that will emerge when agents alter their behavior. In this tutorial, which is based on the lecture that I gave at the 2021 American Mathematical Society Short Course, I introduce some of the terms, methods, and choices that arise when building such data-driven models. I discuss the differences between models that are statistical or mathematical, static or dynamic, spatial or non-spatial, discrete or continuous, and phenomenological or mechanistic. For concreteness, I also describe models of two complex systems, election dynamics and pedestrian-crowd movement, in more detail. With a conceptual approach, I broadly highlight some of the challenges that arise when building and calibrating models, choosing complexity, and working with quantitative and qualitative data.