论文标题

全局解决方案的低马赫数限制到可压缩的Navier-Stokes系统,用于关键BESOV空间中的大数据

Low Mach number limit of the global solution to the compressible Navier-Stokes system for large data in the critical Besov space

论文作者

Fujii, Mikihiro

论文摘要

在本文中,我们考虑可压缩的Navier-在恒定平衡状态周围稳定系统,并证明了全局解决方案的独特存在,只要MACH数字足够小,并且初始速度的不可压缩的部分就可以在缩放量表中任意大型初始数据,并且初始速度的不可压缩部分会产生不可压缩的Navier-Stokes-Stokes-Stokes-Stokes-Stokes-Stokes-Stokes-Stokes-Stokes Equeste。此外,我们考虑了低的马赫数限制,并表明可压缩的解决方案会在某些时空规范中收敛到不可压缩的Navier的解决方案。

In this paper, we consider the compressible Navier--Stokes system around the constant equilibrium states and prove the unique existence of a global solution for arbitrarily large initial data in the scaling critical Besov space provided that the Mach number is sufficiently small and the incompressible part of the initial velocity generates the global solution of the incompressible Navier--Stokes equation. Moreover, we consider the low Mach number limit and show that the compressible solution converges to the solution of the incompressible Navier--Stokes equation in some space-time norms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源