论文标题

自动驾驶中域的对象检测的双练习教师

Dual-Curriculum Teacher for Domain-Inconsistent Object Detection in Autonomous Driving

论文作者

Yu, Longhui, Zhang, Yifan, Hong, Lanqing, Chen, Fei, Li, Zhenguo

论文摘要

近年来,自动驾驶汽车的对象检测受到了越来越多的关注,在这些数据通常很昂贵的同时,可以轻松收集未标记的数据,呼吁研究该领域的半监督学习。现有的半监督对象检测(SSOD)方法通常假定标记和未标记的数据来自相同的数据分布。但是,在自动驾驶中,数据通常是从不同的情况(例如不同天气条件或一天中不同时间)收集的。在此激励的情况下,我们研究了一个新颖但具有挑战性的领域不一致的SSOD问题。它涉及不同域之间的两种分配变化,包括(1)数据分布差异,以及(2)类别分配变化,使现有的SSOD方法遭受了不准确的伪标签和伤害模型性能。为了解决这个问题,我们提出了一种新颖的方法,即双课程老师(管道教师)。具体而言,导管师由两个课程组成,即(1)域不断发展的课程试图通过估计域之间的相似性来逐步从数据中学习,以处理数据分布差异,(2)匹配的课程匹配的分布旨在估算每个未标记的域分布域以处理课程分配转移。通过这种方式,导管师可以校准有偏见的伪标签,并有效地处理域 - 固定的SSOD问题。导管者在苏打水上展示了其优势,这是最大的公共半监督自主驾驶数据集和广泛使用的SSOD基准可可的优势。实验表明,导管师在苏打水上实现了新的最先进的性能,并具有2.2地图改进和可可的地图,并改进了地图。

Object detection for autonomous vehicles has received increasing attention in recent years, where labeled data are often expensive while unlabeled data can be collected readily, calling for research on semi-supervised learning for this area. Existing semi-supervised object detection (SSOD) methods usually assume that the labeled and unlabeled data come from the same data distribution. In autonomous driving, however, data are usually collected from different scenarios, such as different weather conditions or different times in a day. Motivated by this, we study a novel but challenging domain inconsistent SSOD problem. It involves two kinds of distribution shifts among different domains, including (1) data distribution discrepancy, and (2) class distribution shifts, making existing SSOD methods suffer from inaccurate pseudo-labels and hurting model performance. To address this problem, we propose a novel method, namely Dual-Curriculum Teacher (DucTeacher). Specifically, DucTeacher consists of two curriculums, i.e., (1) domain evolving curriculum seeks to learn from the data progressively to handle data distribution discrepancy by estimating the similarity between domains, and (2) distribution matching curriculum seeks to estimate the class distribution for each unlabeled domain to handle class distribution shifts. In this way, DucTeacher can calibrate biased pseudo-labels and handle the domain-inconsistent SSOD problem effectively. DucTeacher shows its advantages on SODA10M, the largest public semi-supervised autonomous driving dataset, and COCO, a widely used SSOD benchmark. Experiments show that DucTeacher achieves new state-of-the-art performance on SODA10M with 2.2 mAP improvement and on COCO with 0.8 mAP improvement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源