论文标题

让我更新!长期对话中的记忆管理

Keep Me Updated! Memory Management in Long-term Conversations

论文作者

Bae, Sanghwan, Kwak, Donghyun, Kang, Soyoung, Lee, Min Young, Kim, Sungdong, Jeong, Yuin, Kim, Hyeri, Lee, Sang-Woo, Park, Woomyoung, Sung, Nako

论文摘要

记住过去的重要信息并在当前继续谈论它在长期对话中至关重要。但是,以前的文献并未处理记忆信息过时的案例,这可能会在以后的对话中引起混乱。为了解决这个问题,我们在长期对话中介绍了一项新颖的任务和相应的内存管理数据集,在此过程中,机器人在通过多个会话进行对话时跟踪并提出有关用户的最新信息。为了支持更精确和可解释的内存,我们将内存表示为关键信息的非结构化文本描述,并提出了一种新的内存管理机制,可以选择性地消除无效或冗余信息。实验结果表明,我们的方法的表现优于使存储记忆保持不变的基准,而在引人入胜的和人性方面,效果差距较大,尤其是在后来的课程中。

Remembering important information from the past and continuing to talk about it in the present are crucial in long-term conversations. However, previous literature does not deal with cases where the memorized information is outdated, which may cause confusion in later conversations. To address this issue, we present a novel task and a corresponding dataset of memory management in long-term conversations, in which bots keep track of and bring up the latest information about users while conversing through multiple sessions. In order to support more precise and interpretable memory, we represent memory as unstructured text descriptions of key information and propose a new mechanism of memory management that selectively eliminates invalidated or redundant information. Experimental results show that our approach outperforms the baselines that leave the stored memory unchanged in terms of engagingness and humanness, with larger performance gap especially in the later sessions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源