论文标题

CS-MLGCN:多路复用网络的多重图形卷积网络

CS-MLGCN : Multiplex Graph Convolutional Networks for Community Search in Multiplex Networks

论文作者

Behrouz, Ali, Hashemi, Farnoosh

论文摘要

社区搜索(CS)是网络科学中的基本任务之一,由于它能够发现具有广泛应用的个性化社区,因此引起了很多关注。鉴于任何查询节点,CS试图找到一个包含查询节点的密集连接的子图。大多数现有的方法通常研究节点之间具有单一类型接近的网络,该网络定义了网络的单个视图。但是,在许多应用程序(例如生物,社会和运输网络)中,对象之间的交互范围跨越了多个方面,从而产生了具有多种视图的网络,称为多重网络。多路复用网络中的现有CS方法采用预定义的子图模式来对社区进行建模,该模式无法找到在现实世界网络中没有这种预定模式的社区。在本文中,我们在多重网络CS-MLGCN中提出了一个以查询为驱动的图形卷积网络,该网络可以通过数据驱动的方式向地面真实社区学习,可以通过从地面真相社区学习来捕获灵活的社区结构。 CS-MLGCN首先将局部查询依赖性结构和嵌入到每种类型的接近度中的全局图结合在一起,然后使用注意机制将有关不同类型关系的信息结合在一起。在现实世界图上进行基础真相群落的实验验证了我们获得的解决方案的质量和模型的效率。

Community Search (CS) is one of the fundamental tasks in network science and has attracted much attention due to its ability to discover personalized communities with a wide range of applications. Given any query nodes, CS seeks to find a densely connected subgraph containing query nodes. Most existing approaches usually study networks with a single type of proximity between nodes, which defines a single view of a network. However, in many applications such as biological, social, and transportation networks, interactions between objects span multiple aspects, yielding networks with multiple views, called multiplex networks. Existing CS approaches in multiplex networks adopt pre-defined subgraph patterns to model the communities, which cannot find communities that do not have such pre-defined patterns in real-world networks. In this paper, we propose a query-driven graph convolutional network in multiplex networks, CS-MLGCN, that can capture flexible community structures by learning from the ground-truth communities in a data-driven fashion. CS-MLGCN first combines the local query-dependent structure and global graph embedding in each type of proximity and then uses an attention mechanism to incorporate information on different types of relations. Experiments on real-world graphs with ground-truth communities validate the quality of the solutions we obtain and the efficiency of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源