论文标题
用于强耦合QCD的Grassmann Tensor网络方法
Grassmann tensor-network method for strong-coupling QCD
论文作者
论文摘要
我们提出了一种张量 - 网络方法,用于在非零化学势方面与交错的QCD进行强耦合QCD。在无限耦合时集成了量规场后,可以将分区函数写成由量子网络的完整收缩,该张量网络由耦合的局部数字和Grassmann张量组成。为了评估分区函数并计算可观测值,我们开发了Grassmann高阶张量重新归一化组方法,该方法是专门针对该模型量身定制的。我们将该方法应用于二维情况,并通过比较分区函数的结果,手性冷凝物和重子密度的结果,并在小晶格上具有精确的分析表达式,高达$ 4 \ times4 $。对于较大的二维体积,我们为手性冷凝物作为质量和体积的函数提出张量结果,并观察到手性对称性在二维中不会动态地破裂。此外,我们的数量密度与化学电位的函数的结果提示在一阶相变。最后,我们为三维强耦合QCD提供了一些初步张量结果。
We present a tensor-network method for strong-coupling QCD with staggered quarks at nonzero chemical potential. After integrating out the gauge fields at infinite coupling, the partition function can be written as a full contraction of a tensor network consisting of coupled local numeric and Grassmann tensors. To evaluate the partition function and to compute observables, we develop a Grassmann higher-order tensor renormalization group method, specifically tailored for this model. We apply the method to the two-dimensional case and validate it by comparing results for the partition function, the chiral condensate and the baryon density with exact analytical expressions on small lattices up to volumes of $4\times4$. For larger two-dimensional volumes, we present tensor results for the chiral condensate as a function of the mass and volume, and observe that the chiral symmetry is not broken dynamically in two dimensions. Furthermore, our results for the number density as a function of the chemical potential hint at a first-order phase transition. Finally, we present some preliminary tensor results for three-dimensional strong-coupling QCD.