论文标题

在星系尺度强镜头中使用连续神经场对镜头电位进行建模

Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses

论文作者

Biggio, Luca, Vernardos, Georgios, Galan, Aymeric, Peel, Austin

论文摘要

强力透镜是研究星系内和之间的黑暗和发光质量分布的独特观察工具。考虑到子结构的存在,当前强透镜观测值比平滑的分析曲线(例如幂律椭圆形)需要更复杂的质量模型。在这项工作中,我们引入了一个连续的神经场,以预测整个图像平面上任何位置的镜头势,从而可以对镜头质量进行几乎与模型无关的描述。我们将我们的方法应用于模拟哈勃太空望远镜成像数据,其中包含不同类型的扰动到平滑的质量分布:局部的深色subhalo,subhalos的种群和外部剪切扰动。假设对源表面亮度的了解,我们使用连续的神经场单独进行扰动或全面镜头电位进行建模。在这两种情况下,所得模型都能够符合成像数据,并且我们能够准确地恢复光滑电势和扰动的特性。与许多其他深度学习方法不同,我们的方法明确保留了镜头物理学(即镜头方程),并且仅在需要的情况下才能在模型中引入较高的灵活性,即镜头潜力。此外,神经网络不需要对大量标记数据进行预训练,并预测了单个观察到的透镜图像的电位。我们的模型是在完全微分的镜头建模代码大力神中实现的。

Strong gravitational lensing is a unique observational tool for studying the dark and luminous mass distribution both within and between galaxies. Given the presence of substructures, current strong lensing observations demand more complex mass models than smooth analytical profiles, such as power-law ellipsoids. In this work, we introduce a continuous neural field to predict the lensing potential at any position throughout the image plane, allowing for a nearly model-independent description of the lensing mass. We apply our method on simulated Hubble Space Telescope imaging data containing different types of perturbations to a smooth mass distribution: a localized dark subhalo, a population of subhalos, and an external shear perturbation. Assuming knowledge of the source surface brightness, we use the continuous neural field to model either the perturbations alone or the full lensing potential. In both cases, the resulting model is able to fit the imaging data, and we are able to accurately recover the properties of both the smooth potential and of the perturbations. Unlike many other deep learning methods, ours explicitly retains lensing physics (i.e., the lens equation) and introduces high flexibility in the model only where required, namely, in the lens potential. Moreover, the neural network does not require pre-training on large sets of labelled data and predicts the potential from the single observed lensing image. Our model is implemented in the fully differentiable lens modeling code Herculens.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源