论文标题
关于锥形卡拉比远电势的规律性
On the regularity of conical Calabi-Yau potentials
论文作者
论文摘要
使用归化sasakian歧管上的多能理论,我们表明,Fano锥体上的局部有限的锥形Calabi-yau潜力实际上是在常规位点上的光滑。这项工作是由R. Berman在圆锥体为复曲面的情况下获得的类似结果。我们的证明纯粹是多功能的,并且独立于对锥体上施加的任何额外的对称性。
Using pluripotential theory on degenerate Sasakian manifolds, we show that a locally bounded conical Calabi-Yau potential on a Fano cone is actually smooth on the regular locus. This work is motivated by a similar result obtained by R. Berman in the case where the cone is toric. Our proof is purely pluripotential and independent of any extra symmetry imposed on the cone.